
NASA-CR-201023

Design of Object-Oriented Distributed Simulation Classes

James D Schoeffler, Principal Investigator

Professor of Computer and Information Science

Cleveland State University

Cleveland, Ohio 44115

Final Report

Grant No. NAG 3-1441

October, 1992 to November, 1995

Design of Object-Oriented Distributed Simulation Crosses

James D Schoeffier, Principal Investigator

Professor of Computer and Information Science

Cleveland State University

Cleveland, Ohio

Final Report
Grant No. NAG 3-1441

October, 1992 to November, 1995

Summary

Distributed simulation of aircraft engines as part of a computer aided design package

being developed by NASA Lewis Research Center for the aircraft industry. The project is

called NPSS, an acronym for "Numerical Propulsion Simulation System". NPSS is a

flexible object-oriented simulation of aircraft engines requiring high computing speed. It is

desirable to run the simulation on a distributed computer system with multiple processors

executing portions of the simulation in parallel. The purpose of this research was to

investigate object-oriented structures such that individual objects could be distributed. The

set of classes used in the simulation must be designed to facilitate parallel computation.

Since the portions of the simulation carried out in parallel are not independent of one " '

another, there is the need for communication among the parallel executing processors

which in turn implies need for their synchronization. Communication and synchronization

can lead to decreased throughput as parallel processors wait for data or synchronization

signals from other processors.

As a result of this research, the following have been accomplished. The design and

implementation of a set of simulation classes which result in a distributed simulation

control program have been completed. The design is based upon MIT "Actor" model of a

concurrent object and uses "connectors" to structure dynamic connections between

simulation components. Connectors may be dynamically created accord¢ng to the

distribution of objects among machines at execution time without any programming

changes. Measurements of the basic performance have been carried out with the result that

communication overhead of the distributed design is swamped by the computation time of

modules unless modules have very short execution times per iteration or time step. An

analytical performance model based upon queuing network theory has been designed and

implemented. Its application to realistic configurations has not been carried out.

1. Introduction

The Numerical Propulsion Simulation System (NPSS) project has as its objective the

construction of a generalized analytical framework for studying the overall behavior of an

aircraftengineunderbothtransientand steady-state conditions. Simulation of engines and

their environment is a computationally complex and expensive component of the

framework. NPSS envisions a distributed simulation of an engine in terms of a set of

components implemented as objects in a language such as C++.

The objects are not independent of one another of course because they share interfaces.

The pressures and temperatures at the outlet of one component must be identical to the

corresponding variables at the inlet of a physically connected component for example.

The distribution of components implies that components execute (usual!y) in different

address spaces or machines. In the simplest case, the simulation advances one iteration at a

time (no time dependence) or one time increment at a time. In either cale, it is necessary

for components to share data which is coordinated by time or iteration.

Coordination and distribution imply communication in the form of messages from one

component to another with the coordination being enforced by the availability or lack of

availability of the data from the other component. Hence inter-module communication of

data is central to the distributed simulation. Many other fields have design, analysis and

simulation problems with the same set of needs.

There are three essential characteristics required of the objects to meet these needs.

.

.

.

Their structure must be such that they may be written independently of one ,

another so that different components may be substituted, simulated, and evaluated.

Furthermore, the structure must be such that the creator of the obicct can focus on

the physics of the object and not the computer science and implementation

considerations. Furthermore, each object may represent its engir:e component at

varying level of fidelity (e.g., one dimensional versus three dimensional model).

Hence the creator of an object must not assume knowledge of the details within

other objects. The interface between objects must be such that ciifferences in

fidelity can be handled. For example, two adjacent components may use two

different numerical grids to discretize variables such as pressure or temperature.

The transformation of these grids must be possible at the interface. The interface

between a component modeled as a one dimensional object and another modeled

as a three dimensional object must transform the data for data-sharing purposes.

This general requirement is termed "zooming".

It must be possible to distribute the objects representing the components to be

simulated among separate but communicating processors to take advantage of

parallel computation without change to the objects and without customization of

so,ware. Hence inter-object communication must not require special code

dependent upon the distribution.

Objects must execute as thought they were truly running concurrently with one

another without the need for an overall control program which Understands the

objects, their interconnection, and their distribution in order to properly Sequence

them.

Thepurposeof thisresearchwasto presentaframeworkfor objectswhichmeetthe
essentialcharacteristicslistedabove.Section2 of thisreportdiscusses.thedecomposition
of theoverallsystemintoconcurrentcommunicatingobjects,therequir':dinternal
structureof theseobjects,andtheresultingcomputationalmodelfor anobject.Section3
discusseshow the introductionof "connectorobjects"canprovidethebasisfor
distributionof theobjectsin ageneralway.Section4 describesanexecutionmodelwhich
is usedin eachprocessto providetheequivalentof concurrentexecution.Section5
describesanimplementationof thisapproachandits results.

2. Decomposition into concurrent eommunieatin_ objeets

An object representing a physical component to be simulated is modeled conceptually as

shown in figure 2. I. The module is shown with distinct inputs and outputs, each of which

represent ports or connection points so that objects can be interconnected. The figure uses

the term "module" to differentiate it from other objects (such as connector objects). By an

input or output port is meant a path along which data objects which represent a group of

data items which, correspond to the variables at an interface between this component and

another connected to it. Sharing of data is then taken to be sharing of data objects all of

whose components represent variables calculated at a given time instan:' or iteration.

Similarly, outputs represent ports through which this module object can send data objects

it has calculated at a given time instant or iteration. It is important to urderstand that the,,

module itself must not know about the source of data objects it receives or the

destinations of data objects it creates. It is the responsibility of the simulation user to

interconnect modules for a given simulation. The form of this interconnection is described

in the next section.

Objects represent engine modules and calculate pressure, temperatures, flows given input

conditions to the module. The module is modeled in single or multiple dimensions using

either steady-state or time-evolving relationships. The model interconnects objects two

ways:

.

.

objects whose inputs are actually outputs of another object are interconnected in

the sense that an update of the former object at a given time step or iteration

cannot take place before the latter object output has been obtained

solver objects are used to break closed loops which occur in (1) by supplying

inputs to one module object in the loop based upon previous values of the output

of the other module which must be the same as the supplied input when iteration

converges

As a basis for design, the MIT "actor" model has been developed for the purpose of easy

distribution of the modules. Actor-object characteristics are:

1. Each actor acts as though it has its own thread of control

.

.

Each actor acts as though it has its own queue of messages which it processes one

at a time (possibly in priority order) in a run-to-completion manner in the sense

that a given actor-object does not start processing a second message until the

processing of the first message has been completed. Note that this does not

preclude the task in which the actor resides being blocked in favor of other tasks.

Processing is depending upon the state of the actor-object and may include change

of state.

These characteristics greatly simplify the scheduling of module executions whether they

are on the same machine or different machines-a key requirement for this simulation. The

actor model associates a single thread of execution with each object. As a result, each

module (actor) is assigned to a UNIX process in a given network of machines. There may

be multiple processes per machine and multiple actors per process with. the division

arbitrary.

A control program which spawns the processes in the various machines and controls and

sequences the actor objects through control of their messages containing outputs

calculated by each module has been created. The C++ program has been extensively tested

and modified to fit the objects of the distributed simulation. Its particular strengths lie in

its control of the actors, handling of messages; its use of"connectors" to dynamically

interconnect the modules into an arbitrary configuration; its ability to arbitrarily allocate

the distribution of modules in response to user request; and its ability to automatically start

up the parallel execution and coordinate through its completion. ' '

The behavior of the module for one iteration is taken to be:

.

2.

3.

4.

5.

Request input data objects.

Wait (block) until the data objects have arrived. ''

Compute the data objects which represent outputs of tl'/e compctation.

Send output data objects in response to requests.

Advance time/iteration and repeat the sequence.

The "public" structure of the module object which realizes this behavior is shown in figure

2.2. There are shown the object methods which support the above behavior. The

initialization method resets the internal data members of the module including time and

iteration number; the execute method carries out the main computation of the module and

produces the output objects; the message processing method responds to messages of

know type such as requests for module state or module statistics; the buffer to input data

method transfers data from a received data object into internal data of the module; and the

output data to buffer method transfers internally calculated data into data objects for

output to other modules.

The interface is said to be "public" because these are the only methods'that a module

creator must write. The module creator decides what internal data is needed, and how the

computationis to becarriedout, theessentialpartof themodule,andimplementsthis in
theexecutemethod.Themodulecreatormustalsowrite theservicemethodswhich
supportthekeyexecutemethod.

A majorcharacteristicsof themodulestructureis thecommunicationviadataobjects.
Suchobjects,becausetheyareobjects,canhandleproblemssuchasdatatransformations
becauseof machine-dependentdatastorageproblemsandproblemsof errordetection
(wrongdataobjecttransmitted/received).Becausedataissharedby adjacentmodules,it is
necessaryfor theformof thedataobjectswhichcontaintheshareddatato bedefinedto
thesystem.Henceinterconnectioncarriesthe implicationof modulesandportswhich
communicateandalsothecontentsof thedataobjectswhicharecommunicated.
Obviouslyit is not possibleto modularizeasimulationif oneobjectdoesnot producedata
necessaryfor theothermodules.Hencetheidentificationof theshareddataisnot a
problem.Theform of theshareddatahoweveris an importantconsideration.Theessential
characteristiccalled"zooming"summarizesthecontrolover thisaspect:modules(through
their buffer input andbufferoutputroutines)or interfaceobjects(via attached
transformationor zoomingmethods)can(andsometimesmust)transformthedatato the
internalform desired.

In additionto thepublicmethods,thereisa majorinternalprivatemethodwhichenforces
thepropersequenceof thecalculationandcallstheabovemethods.Figure2.3shows
"state"of themodulethat is usedandtheenforcedsequence.Note that:themodulethen
proceedsthrougha seriesof computationsinterspersedwith waits.Henceeachmodule " '
executesasthoughit werea separateprocess.Section4 discusseshow this isactually
carriedout.

Themajor pointof this sectionis thestructureof themodulewhichallowsthecreatorof
the moduleto divorcetheessentialdesignof themodule'scomputationfrom thedetailsof
interconnection,execution,sequencing,andcommunication.

Not discussedhereis theproblemof interconnectedmoduleswhichform tight closed
loops.Thisrequirestheintroductionof modules,called"solvermodules"whosemethods
areidenticalbut whosestatesequenceis slightlydifferent.Theypose,however,no
differentwork for their creation.

3. Connectors as the basis for efficient inter-object communication

A major objective is to divorce a module from its interconnections, es.cf:cially the possible

need for multiple destinations of its outputs, source of inputs, and control over requesting

and synchronization of delivery. To this end, all of this is done by standard internal private

methods of the module object and do not concern the designer who is responsible only for

creating the output data objects and using the input data objects..

The module private functions make input requests through each input port and respond to

requests arriving at output ports. Connector objects are attached to each port for the

purposeof handlingtheconfigurationof themodulesat run time (at ru-_-time, the

interconnection must be established), and the delivery of messages (ind,.lding information

which indicates that data is not yet ready and hence the requester will have to wait).

Furthermore, the connector objects must do this efficiently. If two communicating

modules are in separate machines, the data object must be communicated by messages. If

two communicating modules are in the same process in a single machine, the data object

must be communicated by simple function call. Thus the efficiency must be the same as for

a communicationAnterconnection strategy which is planned in advance except that it can't

be known in advance.

Figure 3.1 shows the connector objects which realize this interconnection. A source

connector is attached to output port and a destination connector to each input port of.

each module. Since outputs may be connected to an arbitrary number of input ports, the

source connector is actually a collection of objects. The net result is that each

communication path starts at a source connector and terminates at a destination

connector. Methods of the connector provide requests for data and call," to receive a data

object. These methods are not called by the module creator in defining _,he module

methods discussed in the previous section, but instead are used by the internal private

methods of the module.

Notice in figure 3.1 that a separate interprocess-communication (IPC) object is attached to

each connector. Upon startup, the objects are instantiated in each process in each machine.

Configuration information is transmitted at run-time from the user (through a graphic user,

interface or a batch file depending upon the user's choice) so that the choice of module

objects to be instantiated is known and their distribution among machines. The location

information is used by the connector to instantiate either a Iocal-lPC object or a remote-

IPC object each of which is a C++ class derived from an abstract IPC class. The methods

of the IPC derived classes are virtual so that polymorphism permits the modules and

connectors to use their methods with no knowledge about whether the connection is local

or remote.

Figure 3.2 shows the effect of a communication between two modules in the same process

(as would be the case in an integrated implementation). All transfers arc by function call.

Hence the requester module receives an ACK or NAK back from the connector depending

upon whether or not the requested data object has been delivered. If the data object was

ready for delivery (the source object was then waiting for all requests to be received

before it starts another iteration), the request causes the data object to be transferred to

the requesting module via a call to the input methods of the module and then returns an

ACK to the requester. If the data is not available (the modules are asynchronous), a NAK

is returned and the requesting module blocks until the object is received. Once requested,

the module need not request it again as the request is noted in the source connector.

Hence when the source module does complete its calculation and produces the output

data object, it is immediately transferred to those modules which have already requested it.

The arrival &that data object then changes the state of the requesting module so it can

unblock and proceed (see section 4).

Figure3.3 showscommunicationbetweentwo remotemodules.In thiscase,theIPC
objectsautomaticallyreturnaNAK to therequesterbecauseboththerequestandthedata
objectreturnmustbedonethroughmessage passing. Such communication takes on the

order of a millisecond or so and it is important to keep processors as busy as possible.

Blocking the requesting module permits its machine to be allocated to another module in

the same machine (if any). Meanwhile, the IPC formulates a message and transmits it. Its

arrival is handled similarly to the direct transfer case, with the request being notes if the

data is not available, or the data being transferred if it is. In the latter c;_e, the module

uses its output method to send the data to the connector and unaware that the IPC of the

connector will then pack the object into a message for communication tc the remote

machine. The arrival of the message to the source module is made transparent by having

the IPC of that connector construct the data object from the message and then pass the

data module to the input method of the module just as though it had been directly passed.

Because it is desirable to allow any distribution appropriate to a given simulation, it is

desirable to permit one, many, or even all modules and objects to be in one process. The

latter case corresponds to an corresponding integrated simulation program. Because

modules are concurrently and because inter-process message passing in workstation

environments is process-to-process, it is necessary to have an execution control model to

handle messages and multiple concurrent modules. This is discussed in the next section.

4. The execution model for the simulation

Distribution of the modules, connectors, IPC objects, and other object, is based upon the

desired distribution of the modules themselves. Connector and IPC obje_,ts are always

associated with a module. Hence the distribution results in a set of prct'esses, with

processes assigned to specific machines. A process is the basic scheduling unit in a

computer. Within a process, however, there may be one or more modules. Since modules

are explicitly designed to execute concurrently, it is necessary that there be execution

control within a process. Without this control, a module which blocks waiting for input

data for example, would block the entire process and hence the concurrent modules,

thereby destroying the utilization of the parallel computers.

Our model of the concurrent modules is essentially the MIT Actor model which takes the

object to execute concurrently with other actors (objects) each having its own "thread" of

execution. This allows the module to block its own thread without blocking the threads of

concurrent modules.

Simulation module objects described earlier are specifically designed so that they can be

easily and efficiently managed by a control section of a process so that 'he set of modules.

In particular, all [/O operations are carried out through calls to methods which do not

block the module but rather return to the control section of the process. Actually the

group of modules, connectors, and other objects are all contained within another objects,

the module group object, which .manages the collection and contains methods for

controlling the concurrent execution of modules within itself as though ,:hey were

executing in separate threads.

The module group maintains a ready list, a list of modules waiting to compute but not

containing those blocked waiting for input data objects or waiting for output data object

requests. The module group execution method simply selects a module from the ready list,

and calls its execution method, that module runs one phase of its activities and then

returns to the module group execution method indicating whether it can be returned to the

ready list or not.

Messages are passed from process to process by the underlying operating system and

communication software Hence messages arriving for a module are actually arriving to

the module group object. Prior to scanning the ready list and allocating the computer to a

module, any waiting message is examined to determine the destination module, and then

transferred to that module by calling a message handling method of the input connector of

that module to which the message is addressed. The connector method then calls module

methods to transfer the data object into the module without actually r_aking the module

active (i.e., scheduling it for execution). It does this by calling internal methods of the

module and connectors designed to be passive methods, that is, designed.to be called

whenever the active methods (the computational methods called when the module thread

is scheduled).

Because execution of all concurrent modules is controlled by the module group and

because modules return to the module group at controlled times, the use of passive

methods is safe and every efficient. No special concurrency control mechanisms have to be

invoked.

5. Experience and conclusions

The above design has been implemented in C++ and evaluated on a local area network of

1LISC processors. The overall object diagram for the system is shown in figure 5.1.

Application modules are linked into the program along with the standa'd modules. Copies

of the program are started on all machines cooperating in the simulatio_ and then

appropriate application modules dynamically instantiated and interconnected at run time.

Tests of given sets of modules distributed in a variety of possible configurations from fully

integrated to fully distributed demonstrate the practicality of the design A detailed

performance model has been constructed for the purpose of predicting the computing time

of a set of modules given their distribution. This model incorporates the detailed state of

each solver and module and of necessity includes overall network states. Because of its

size, the model is limited to about 5 or 6 components. I intended to use the model in

choosing the distribution of modules among work-stations once a user selects as set of

modules for simulation. Since completion ofthat work, however, I have come to believe

that a performance model based upon Mean-Value-Analysis and which includes queuing

centers modeling both hardware modules (work stations) and software modules

(simulationcomponents)wouldbefeasible(removinglimitationsonnumberof modules)
andmoredesirable(becauseof lessercomputationaltime).Althoughtheresearchcontract
hasexpired,I ampursuingthismodelandwill makeresultsavailableto theNPSSproject.

5. Unsolved Problems

The results of this research indicated that an actor-based model can provide a flexible

structure on which a distributed simulation can be based. In particular, it demonstrated

that:

. A simple specification of how an arbitrary module may be imple'nented and added

to the system may be provided In effect, a user written module need provide the

methods of Figure 2.2

. The specification of location of modules for execution can be specified arbitrarily

at run time. In the test implementation, all classes were linked into a single

executable program which is initiated on all machines on which modules are to run.

The program then reads a simple shared file indicating the module name and class

and machine on which it is to run. The program then instantiates the objects

corresponding to these classes and they interconnect automatically at run time.

This implies that the design is quite compatible with a Graphic User Interface that

allows an engineer to specify an engine configuration (including distribution on

machines) followed by immediate execution. Furthermore, an additional step that-,

could optimally distribute the selected modules for load-sharing purposes would be

easy to add.

. The test implementation demonstrated that the efficiency of the interconnection is

adequate, especially when individual modules have any significa,_t amount of

computation per iteration. This is expected to be the case espec!ally for two and

three dimensional engines models and transient analysis.

However three problems have not been addressed and need further research. They are:

. The test implementation requires all modules that are to be included in the

simulation to be pre-linked into a single executable program that can run on all

machines in the distributed computation network. This is not a fundamental

limitation. All that is required is that each machine in the network be able to run an

executable program which contains the overall control logic andthose classes

which correspond to modules which will actually execute on the network.

Nonetheless, this means that the location of the modules which are "special" in

some sense must be known and a program linking step taken before execution.

This would be quite satisfactory for certain situations such-as a proprietary engine

component. In fact, this would provide protection to a user for such components.

Since the only engineers who add modules would have to be accomplished

programmers, this step would be feasible.

It wouldbedesirableto studyhoweasilyspecializedversionsof theprogramscouldbe
createdwithout interferingwith the interactiveuseof thesimulationtool.

. The test implementation assumed that both module and solver ¢;asses are created

and pre-linked into the executable program. However, it seems]esirable to allow

the engineer setting up a simulation to interact with it at the level of specifying

special rules by which individual variables are updated by the simulation and the

solver. This in effect means that the engineer must be able to add relatively simple

statements to the program to accomplish this.

It would not be difficult to provide "hooks" which allow this by adding functions

which are called at key points in the execution cycle. Such functions would

normally be empty and simply do nothing but could easily be overridden by the

engineer in order to add additional statements to the program.

Unfortunately it appears that this would have to be done by one or the other of the

following methods:

. Allow the addition of statements but then require a re-ccmpilation and

linking of the executable program. This is not desirable because of the

problem of requiring the engineer to be an accomplishec' programmer even

though the statements being added are relatively simple. This is because of,

the necessity of understanding program structure (what .rod where the

hooks are) and the problems of referencing variables within in the existing

program. It is easy to imagine programming errors produced by the

compiler and linker which would be baffling to a non-programmer

engineer.

. Provide an interpreter which allowed the engineer to enter statements as

text and which are then carefully interpreted by the interpreter at execution

time. This interpreter would have to be carefully written so that

understandable error messages were provided to the using engineer.

It would be desirable to investigate the efficiency and adequacy of these

and perhaps other methods of making the simulation flexible in the sense of

customizing solvers without requiring complete coding ef new solver

modules.

. The automatic sequencing of the modules which guarantees that no module

will execute until its inputs have been obtained is a key result of this

research. However this also implies that there are no implicit loops in the

specified simulation. Since the structure of the simulation is being set by an

engineer interactively, this condition may not hold.

It is easyto determinethatanimplicit loop existsandwarntheengineer.
The solution is usually to add a solver which breaks the implicit loops.

However it is often common practice to simply ignore the problem and use

data that is one time-period old because after an iterative simulation

converges, the one-period-old data and current data are the same anyway.

The test implementation does not allow this. It would be desirable to investigate how such

situations could best be handled in a general way. Alternatives identified are:

. Allow the engineer to specify the sequence of updating of modules

arbitrarily. The simulation would then warn the engineer of the implicit

loop but agree to run the simulation if the engineer indicated that the

problem was to be solved by ignoring the loop and following the given

update sequence. The simulation would have to be aware of this change

and override the state logic. It is not clear whether or net this is a desirable

solution.

, The simulation could add an arbitrary solver to break the loops after

warning the engineer of the implicit loop. The exact structure of such

solvers and their effect on efficiency needs further investigation.

o0
a

0

cq "5
0s,.

I-

00

c

"O
0

°_

0
0

0

•_-- 00

.

m o
if)

_a

Figure 2.2

A Component as a C++ Class

Class Module

User-Written Component Class

Initialize method

Execute Method

Process Message Method

Output Data To Buffer Method

Buffer to Input Data Method

The State

Figure 2.3

Sequence of a Component Module

Dispatch Sub- Action

State State

(time/iteration is K)

READY

BLOCKED

Ready-No-Input

Ready-No-Input

Request input

Data objects

Input data objects

arrive

READY Ready-Input

Compute outputs

Attempt output of

data objects

BLOCKED Block-Output

Send output data

objects as requested

READY Block-Output

Increment time

and/or
iteration to K+l

READY Ready-No-Input

(time/iteration is K+I)

[,:D]

Figure 3.1

Connector Concept

Component _<J Conn :,
\ /

f

IPC

Object

IPC

Object Component

Data

Obj

address only

Datav. Obj

I

Data

Obj
(message) Data

Obj

Data

Obj _IID.
msg}

(message)

Data

Obj
i

I

I L J

Figure 32

Inter-Module Communication

Both modules in same process

Source

Module

Destination

Module

[

Call retur.n
with data or "-}
NAK

get output - i or NAK
(call)

Source

Connector

Call
return
with data

or NAK

Local

Request
Receive

(cal0

f
Call return I
with Destination
Data or NAK

Request _ Connector
Receive (call)

Figure 3.3

Inter-Module Communication

Modules in separate processes

Source

Module

Destination

Module

Connector may
block

Call returnwith data or
NAK- l

get output - i or NAK

(call)

Immediate
Return with
NAK

Receive (call)

Source

Connector

Message
with data

Remote

Request
Receive

(message)

Destination

Connector

Call to deliver data

Module

Group

Figure 5.1

Principal Parallel

Computation Classes
/

/ [" I

iJ ,M-i
/ t

Module
\

I
I

M-i

Connector

4r
/

,/

j�

[

Source

\
\

'\

\
X

Dest.

r

lPC Lcl

IPC

lPC Rem

